
Getting Started with the Bullhorn SOAP API and Java

Introduction

This article is targeted at developers who want to do custom development using the Bullhorn SOAP API and Java.
You will create a sample application that creates a session to the Bullhorn system, retrieves candidates using a
couple of methods, and displays the results on the console.

You will learn how to:

• set up your environment for development.

• access the Bullhorn SOAP API.

• create and publish a web application in Eclipse that retrieves candidate data.

You can follow the step-by-step instructions and/or download and run the provided code sample files.

Prerequisites

This article assumes knowledge of Java, Eclipse and object-oriented programming. You will also need the Eclipse
AXIS plug-in.

Code files

There are starter and solution files provided for this tutorial as a download. The starter zip file needs to be extracted
within your Java project before you start writing the code. The starter zip has all the libs and the build files needed for
the project.

The solution zip file can be downloaded and run if you want to skip the steps and just see the completed application.
Remember to add the authentication information and your API key to the solution file before running it.

GettingStartedWithWebServices_Java_Starter.zip

GettingStartedWithWebServices_Java_Solution.zip

1. Select File->Import->General->Existing Projects into Workspace.
2. Unzip the GettingStartedWithWebServices_Java_Solution.zip under the Projects directory in your Eclipse

workspace.
3. Build and run the completed application.

Getting started

In order to develop against the Bullhorn web services API, you will need a username, password and API key. If you
don't want to use your own, Bullhorn support can provide you with an API user account.

Note: Developers working directly for Bullhorn customers can get API access by having the customer contact
Bullhorn Support. Once the APIs are enabled for a Bullhorn client, a client administrator can generate a customer-
specific API key by going to Tools > BH Connect > Web Services API. If a key does not already exist, you can
create a new one by clicking Add Account.

Setting up Eclipse

The following steps explain how to create and set up a project in Eclipse that connects to the Bullhorn WSDL.

Creating a project

In this section, you will create a Java project in Eclipse.

4. Launch Eclipse and select File > New > Java Project to create a new project.
5. Enter GettingStartedWithWebServices under Project name.

6. Select Finish to create the project.

Adding a web reference to the Bullhorn WSDL

Before using the API, you must first generate Java objects and classes that serve as proxies for their server-side
counterparts from the Bullhorn's WSDL file. You can use the WSDL2Java utility to create these client stubs.

Note: You will find the Axis WSDL-to-Java tool in "org.apache.axis.wsdl.WSDL2Java".

Student files are provided with the tutorial that has the ANT build files created for you already. Download
the GettingStartedWithWebServices_Java_Starter.zip file and save it to your local file system.

Using the WSDL2Java utility

http://developer.bullhorn.com/sites/default/files/fig02_0.png

You will run the WSDL2Java tool to create Java proxy classes for the Bullhorn SOAP API. The client application that
you are building will use these classes to interface with the Bullhorn system.

7. In Eclipse, select the new project you just created.
8. Select File > Import > General > Archive File.
9. Click Next.
10. Browse to the student file GettingStartedWithWebServices_Java_Starter.zip on your local file system.
11. Make sure the Into folder points to the GettingStartedWithWebServices project folder.
12. Click Finish.

You will see the following new files and folders created under your project.
o lib – This folder contains the jar files for web services
o build.xml - This file has the build definition in it
o build.properties – This file defines the properties for the build.xml file

13. Open a command prompt window and browse to the GettingStartedWithWebServices project folder you
created within Eclipse.

14. Run ant wsdl2java in the folder.
You will see all the Java proxy classes that interface between your application and the web service
generated under the src folder.
You can now explore all the classes and look at methods within them.

Now that the web reference is associated with the project, you can start making calls to the API within your Java
code.

Understanding how the Bullhorn SOAP API works

http://developer.bullhorn.com/sites/default/files/fig03_0.png

This section walks through a sample Java client application. The purpose of this sample application is to show you
the required steps for creating a session between the client application and the Bullhorn system, and to demonstrate
the invocation and subsequent handling of some API calls.

You will program the sample application to perform the following tasks:

• Create a session to the Bullhorn web service using your credentials.

• Build a basic query using dtoQuery.

• Retrieve a single instance of the Candidate DTO.

• Retrieve multiple instances of Candidate DTO.

• Publish the results on the console.

Creating a Java class

In this section, you will create the basic skeleton of the Java class using a wizard. This class is the only Java class
that you will need to do all the coding for this application.

15. In Eclipse, select the project folder and choose File > New > Class.
16. Name the class GettingStartedWithWebServices.
17. Check the method stub for public static void main(String[] args).
18. Click Finish.

Creating a session

http://developer.bullhorn.com/sites/default/files/fig04_0.png

All calls to the Bullhorn SOAP API require you to pass in a valid session. In order to create a session to the Bullhorn
system within the web application, you need a username, password and API key. In this section, you will define the
authentication mechanism for access and create a session to the Bullhorn service.

19. In GettingStartedWithWebServices.java file, define three string variables in the main method. The values for
these variables should be given to you by support.

20. String username = "yourusername";
21. String password = "yourpassword";

 String apiKey = "yourapikey";

22. Define one more string variable for the WSDL URL as shown below.

String wsdlUrl = "https://api.bullhornstaffing.com/webservices-1.1/?wsdl";

Note: At the time of publication, the latest version of the Bullhorn SOAP API is version 1.1.

23. Define a QName variable outside the main method as shown below.
24. private static final QName SERVICE_NAME = new

QName("http://apiservice.bullhorn.com/", "ApiService");

25. Instantiate the ApiService class by adding the following code.
26. URL serviceUrl = new
27. URL(ApiService_Service.class.getResource("."), wsdlUrl);
28.
29. ApiService service = new

 ApiService_Service(serviceUrl, SERVICE_NAME).getApiServicePort();

30. Start an API session by invoking the startSession() method in the ApiService class. The method

startSession() accepts username, password and apiKey as arguments. The method returns a session

object in the response. Assign the session object to the currentSession variable you created.

ApiSession currentSession = service.startSession(username, password, apiKey);

Note: Sessions have a short expiration and need to be refreshed with each call to the Bullhorn SOAP API. Each call
to the Bullhorn SOAP API requires a valid session object, and each response returns a new session object. You
should store that new token in the current session variable so you always have a recently refreshed value.

The session object returned as part of the response should be used in the next call that is made to the API, as
previous session objects will expire in five (5) minutes.

Building a basic query

Tip: Using the Bullhorn SOAP API Query Operation

One of the most powerful operations in the Bullhorn web services APIs is the query operation. This operation allows
you to construct SQL-like queries for a particular type of entity.

The Bullhorn query operation is built on top of Hibernate, an object-relational mapping tool that exposes relational
data as a series of objects. The Hibernate Query Language (HQL) is based on standard SQL but adapts its concepts
to an object-oriented language (Java). The query operation exposes a subset of the operations supported by HQL.

To execute a query, you must construct a Java query DTO and then pass it in as an argument when you call

the queryoperation. The two most important fields in the query DTO are the entityName property, where you

specify the name of the entity you are querying for, and the where property, which contains the where clause for your

http://www.hibernate.org/

query. Within the where property, you can specify a single parameter or create a more complex query using AND, OR,

or NOT.

In this section, you will create a query that returns the Candidate list with at most 10 candidates that are not deleted.

24. Create an instance of dtoQuery class. This class is within the

package com.bullhorn.apiservice.query.

DtoQuery candidateQuery = new DtoQuery();

25. Next you will specify the entityName to be Candidate. The setEntityName() is a method within

the DtoQuery class that accepts a string variable for the entity name.

candidateQuery.setEntityName("Candidate");

26. Define the maxResults property to be equal to 10. The setMaxResults() is a method within

the DtoQuery class that accepts an integer for the maximum number of results to be returned in the

response.

candidateQuery.setMaxResults(10);

27. Now we need to construct the where clause. The where clause is an SQL-like string that will be executed by

the Bullhorn server. For our purposes, the query only checks to ensure that the Candidate has not been
deleted, but you can query on any of the properties exposed on the DTO. For a full list of Candidate
properties, see the reference documentation.

candidateQuery.setWhere("isDeleted = 0");

28. Now that the query has been created, use the query method in the service class and pass it

the currentSession and the candidateQuery variables as arguments. The method returns a SOAP

response that is stored in the queryResultvariable. The ApiQueryResult class is within the package

com.bullhorn.apiservice.result and it used to store query results.

ApiQueryResult queryResult = service.query(currentSession, candidateQuery);

29. Refresh the session by putting the new session in the global variable currentSession.

currentSession = queryResult.getSession();

Run the debugger to see the queryResult variable with the returned data. Notice that the result contains a list of

IDs. Each of these IDs corresponds to an instance of a Candidate in Bullhorn. There are several operations in
Bullhorn that will return a list of ids, including getAssociationIds() and getEntityNotes(). When using these

operations, you most often will follow up by retrieving the specific instance data using find() method

or findMultiple() method, as below.

Retrieve an instance of a DTO

Once the response from the Bullhorn system is available in the queryResult variable, you can extract the ID nodes

of candidates and use each ID to retrieve an instance of the Candidate DTO. In this section, you will use
the find() operation and the findMultiple() operation to retrieve a single instance of a DTO or a list of DTOs.

Retrieving a single DTO using the find() method

You can use the find() method to retrieve an instance of the Candidate DTO.

30. Check using the if condition that the queryResult variable returned some id nodes
31. if (!queryResult.getIds().isEmpty())
32. {

 }

33. Within the if loop, create a loop to access individual ID nodes in the queryResult variable.
34. for (int i =0; i< queryResult.getIds().size() ; i++)
35. {

 }

36. Within the loop, you can use the find() method in the service class to retrieve an instance of the DTO.

The find()method takes the session, entity name and the ID of the Candidate as arguments and returns

the result as a DTO object in the ApiFindResult class.
37. ApiFindResult candidate = service.find(currentSession, "Candidate",

 queryResult.getIds().get(i));

38. Refresh the session by putting the new session in the global variable currentSession.

currentSession = candidate.getSession();

39. Type cast the dto object returned in the result as a CandidateDto object.

CandidateDto thisCandidate = (CandidateDto)candidate.getDto();

Publishing the results of the find() operation on console

In order to view the results of the data retrieved from a Bullhorn system, you can print the returned data to the
console. The candidate object has several methods defined to access the properties of the object.

For the purposes of this tutorial, you can use the getName() method to retrieve the candidate’s name,

the getOccupation()method to retrieve the occupation and the getDateAvailable() method to retrieve the date

the candidate is available to start the new job.

System.out.println("Found candidate using find() method: " +thisCandidate.getName() + ",

 " + thisCandidate.getOccupation() + ", available on "

+thisCandidate.getDateAvailable());

Retrieving a list of DTOs using findMultiple() method

You can also use the findMultiple() method to retrieve several instances of the DTO together. If you know you

will need to fetch more than 2-3 DTOs, it is more efficient to use findMultiple() as it will reduce the number of

round trips required to get the data. However, it will also increase the size of the responses you receive.

35. The findMultiple() method takes the session, entity name and an array of up to 20 ID nodes as

arguments and returns the result as an array of dto objects in the ApiFindMultipleResult class.
36. ApiFindMultipleResult candidatesMultiple = service.findMultiple(currentSession,

 "Candidate", queryResult.getIds());

37. Refresh the session by putting the new session in the global variable currentSession.

currentSession = candidatesMultiple.getSession();

38. To access individual DTOs, loop over the result array using the length of the array as a condition.
39. for (int i = 0; i < candidatesMultiple.getDtos().size(); i++)
40. {

 }

41. Within the for loop, access the individual dto's by type casting each object in the result array

to candidateDto.

CandidateDto thisCandidate = (CandidateDto)candidatesMultiple.getDtos().get(i);

Publishing the results of findMultiple() operation on console

39. Add the following code to print the results of the findMultiple() operation.
40. System.out.println("Found candidate using findMultiple() method:" +
41. thisCandidate.getName() + ", " + thisCandidate.getOccupation() +

 ", available on " +thisCandidate.getDateAvailable());

Tips for using Java with Bullhorn web services

The following tips are useful when working with Java and the Bullhorn WSDL.

Using JDK 1.5 and above

We recommend using JDK 1.5 and above for this tutorial and working with Bullhorn SOAP API.

Using a local copy of the WSDL and building from it

The Bullhorn WSDL might be updated over time. To have complete control over your implementation, we recommend
you download a copy of the Bullhown WSDL and use the local version to build your application by following the steps
below:

40. Download the Bullhorn WSDL from https://api.bullhornstaffing.com/webservices-1.1/?wsdl.
41. Save the file as bullhorn.wsdl under the GettingStartedWithWebServices project workspace.
42. Edit the build.properties file to point the wsdl.url to the local file bullhorn.wsdl.

43. Run ant WSDL2Java again to generate Java classes from the local version of the WSDL.

https://api.bullhornstaffing.com/webservices-1.1/?wsdl

